Math 31 - Homework 4

Due Friday, July 20

Easy

1. Determine if each mapping is a homomorphism. State why or why not. If it is a homomorphism, find its kernel, and determine whether it is one-to-one and onto.
(a) Define $\varphi: \mathbb{Z} \rightarrow \mathbb{R}$ by $\varphi(n)=n$. (Both are groups under addition here.)
(b) Let G be a group, and define $\varphi: G \rightarrow G$ by $\varphi(a)=a^{-1}$ for all $a \in G$.
(c) Let G be an abelian group, and define $\varphi: G \rightarrow G$ by $\varphi(a)=a^{-1}$ for all $a \in G$.
(d) Define $\varphi: \mathrm{GL}_{\mathrm{n}}(\mathbb{R}) \rightarrow \mathbb{R}^{\times}$by $\varphi(A)=\operatorname{det}(A)$. (Recall that \mathbb{R}^{\times}denotes the nonzero real numbers under multiplication.)
(e) Let G be a group, and define $\varphi: G \rightarrow G$ by $\varphi(a)=a^{2}$ for all $a \in G$.
2. Consider the subgroup $H=\left\{i, m_{1}\right\}$ of the dihedral group D_{3}. Find all the left cosets of H, and then find all of the right cosets of H. Observe that the left and right cosets do not coincide.
3. Let G and G^{\prime} be groups, and suppose that $|G|=p$ for some prime number p. Show that any group homomorphism $\varphi: G \rightarrow G^{\prime}$ must either be the trivial homomorphism or a one-to-one homomorphism.

Medium

4. Let G be a group and H a subgroup of G. Show that there are the same number of left cosets of H as there are right cosets of H. That is, exhibit a one-to-one map from the set of all left cosets of H onto the set of all right cosets of H. (Note that this can be accomplished for finite groups by simply counting. Your proof must work for all groups.)
5. [Herstein, Section $2.5 \# 2]$ Recall that $G_{1} \cong G_{2}$ means that G_{1} is isomorphic to G_{2}. Prove the following statements.
(a) For any group G, we have $G \cong G$.
(b) If G_{1} and G_{2} are groups and $G_{1} \cong G_{2}$, then $G_{2} \cong G_{1}$.
(c) If G_{1}, G_{2}, and G_{3} are groups, and $G_{1} \cong G_{2}$ and $G_{2} \cong G_{3}$, then $G_{1} \cong G_{3}$.
[Note that you are essentially proving that isomorphism is an equivalence relation on the class of all groups.]
6. [Herstein, Section 2.5\#14] If G is abelian and $\varphi: G \rightarrow G^{\prime}$ is a homomorphism from G onto G^{\prime}, prove that G^{\prime} is abelian.

Hard

7. [Herstein, Section $2.5 \# 28]$ Let G be a group, and let $\operatorname{Aut}(G)$ denote the set of all automorphisms of G. We can define a binary operation on $\operatorname{Aut}(G)$ by:

$$
\theta \psi=\theta \circ \psi
$$

for $\theta, \psi \in \operatorname{Aut}(G)$.
(a) Prove that if $\theta, \psi \in \operatorname{Aut}(G)$, then $\theta \psi \in \operatorname{Aut}(G)$. (That is, show that we have indeed defined a binary operation by checking that $\operatorname{Aut}(G)$ is closed.
(b) If $\theta \in \operatorname{Aut}(G)$, then θ is in particular a bijection, so it has an inverse θ^{-1}. Prove that θ^{-1} is a homomorphism, so that $\theta^{-1} \in \operatorname{Aut}(G)$ for all $\theta \in \operatorname{Aut}(G)$.
(c) Use parts (a) and (b) to show that $\operatorname{Aut}(G)$ is itself a group under composition.

